Critical dimensions for random walks on random-walk chains.

نویسندگان

  • Rabinovich
  • Roman
  • Havlin
  • Bunde
چکیده

The probability distribution of random walks on linear structures generated by random walks in d-dimensional space, Pd(r, t), is analytically studied for the case ξ ≡ r/t1/4 ≪ 1. It is shown to obey the scaling form Pd(r, t) = ρ(r)tξfd(ξ), where ρ(r) ∼ r 2−d is the density of the chain. Expanding fd(ξ) in powers of ξ, we find that there exists an infinite hierarchy of critical dimensions, dc = 2, 6, 10, . . ., each one characterized by a logarithmic correction in fd(ξ). Namely, for d = 2, f2(ξ) ≃ a2ξ 2 ln ξ + b2ξ 2; for 3 ≤ d ≤ 5, fd(ξ) ≃ adξ 2 + bdξ d; for d = 6, f6(ξ) ≃ a6ξ 2 + b6ξ 6 ln ξ; for 7 ≤ d ≤ 9, fd(ξ) ≃ adξ 2 + bdξ 6 + cdξ d; for d = 10, f10(ξ) ≃ a10ξ 2 + b10ξ 6 + c10ξ 10 ln ξ, etc. In particular, for d = 2, this implies that the temporal dependence of the probability density of being close to the origin Q2(r, t) ≡ P2(r, t)/ρ(r) ≃ t −1/2 ln t. Pacs: 5.40.+j, 05.60.+w, 66.30.-h

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS

A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...

متن کامل

Black Holes, Space-Filling Chains and Random Walks

Many approaches to a semiclassical description of gravity lead to an integer black hole entropy. In four dimensions this implies that the Schwarzschild radius obeys a formula which describes the distance covered by a Brownian random walk. For the higher-dimensional Schwarzschild-Tangherlini black hole, its radius relates similarly to a fractional Brownian walk. We propose a possible microscopic...

متن کامل

A criterion for transience of multidimensional branching random walk in random environment

We develop a criterion for transience for a general model of branching Markov chains. In the case of multi-dimensional branching random walk in random environment (BRWRE) this criterion becomes explicit. In particular, we show that Condition L of Comets and Popov [3] is necessary and sufficient for transience as conjectured. Furthermore, the criterion applies to two important classes of branchi...

متن کامل

The growth exponent for planar loop-erased random walk

We give a new proof of a result of Kenyon that the growth exponent for loop-erased random walks in two dimensions is 5/4. The proof uses the convergence of LERW to Schramm-Loewner evolution with parameter 2, and is valid for irreducible bounded symmetric random walks on any discrete lattice of R2.

متن کامل

Open Quantum Random Walks

A new model of quantum random walks is introduced, on lattices as well as on finite graphs. These quantum random walks take into account the behavior of open quantum systems. They are the exact quantum analogue of classical Markov chains. We explore the “quantum trajectory” point of view on these quantum random walks, that is, we show that measuring the position of the particle after each times...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics

دوره 54 4  شماره 

صفحات  -

تاریخ انتشار 1996